Handling | dentity in Peer-to-Peer Systems*

Manfred Hauswirth, Anwitaman Datta, Karl Aberer
Distributed Information Systems Laboratory
Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
{Manfred.Hauswirth, Anwitaman.Datta, Karl.Aberer}@epfl.ch

Abstract

Due to the limited number of available IP addresses most
computers on the Internet use dynamic IP addresses which
causes problems for applications that have to maintain rout-
ing tables, for example, peer-to-peer systems. To overcome
this we propose unique peer identifiers in the routing tables
and apply the peer-to-peer system itself to maintain consis-
tent id-to-1P mappings to be used in the routing process.
While this may sound like a recursive hen-egg problem we
show that it is in fact possible to devise such a mapping
service for realistic scenarios. Our approach is completely
decentralized, self-maintaining, and light-weight. It takes
into account security to provide sufficient security guaran-
tees for the mappings. We also assume that the service op-
erates in an environment with low online probability of the
peers constituting the service.

1. Introduction

The necessity to use dynamic IP addresses due to the lim-
ited number of available addresses causes problems for ap-
plications that have to maintain routing tables for their op-
eration. For example, in advanced P2P systems ad-hoc con-
nections to peers have to be established in the query rout-
ing process which is only possible if the receiving peer has
a permanent IP address. This problem would be solved if
Mobile IP [12] or IPv6 [13] were in place and available at a
large scale because they take into account mobility (dynam-
icity) and offer a much larger address space. However, this
requires considerable changes in the networking infrastruc-
ture of the complete Internet and it cannot be foreseen at the
moment when this will happen. Thus other solutions like
the approach presented in this paper are required to over-
come the problem in the meanwhile.

As most P2P systems our P-Grid P2P lookup system [2]
suffers from the dynamic IP address problem because this
causes routing tables to become inconsistent. Only very few
systems such as Gnutella and FastTrack do not suffer from
this problem but pay this with other drawbacks such as con-

*The work presented in this paper was supported (in part) by the Na-
tional Competence Center in Research on Mobile Information and Com-
munication Systems (NCCR-MICS), a center supported by the Swiss Na-
tional Science Foundation under grant number 5005-67322.

siderable network bandwidth consumption or limitations in
their structure and applicability. In this paper we propose to
use the underlying P2P system itself (here P-Grid) to keep
track of IP address changes by mapping unique peer iden-
tifications consistently onto peers’ IP addresses in the P2P
system. The routing tables would then hold unique peer
identifications that would be mapped onto the up-to-date IP
address of the peer to be contacted. Mappings would be
cached and the service would only be queried if a stale map-
ping was detected. This may indeed sound like a hen-egg
problem: The system depending on mappings for its oper-
ation is applied to store the mappings. However, we show
that this is possible under real-world assumptions regarding
IP address change rates and online availability of the peers.
We describe the protocol and query processing strategies es-
pecially taking into account security since the mappings are
stored in a completely decentralized system and evaluate the
efficiency of our approach. The security concept of our ap-
proach is a combination of PGP-like public key distribution
and a quorum-based query scheme.

The paper is organized as follows: We first describe the
problems of dynamic IP addresses in more detail in Sec-
tion 2. Then we provide the essential characteristics of P-
Grid in Section 3 which we use both as the implementing
and applying system as a proof-of-concept. Section 4 then
defines our proposed protocol and Section 5 illustrates the
querying strategy of P-Grid modified according to the pro-
tocol so that dynamic IP addresses are accounted for. Sec-
tion 6 then gives some analytical results of our evaluations.
Section7 discusses related approaches and we conclude in
Section 8 by giving out conclusions.

2. Dynamic | P addresses

The limited number of IP addresses is currently ad-
dressed by two concepts: Dynamic Host Configuration Pro-
tocol (DHCP) and Network Address Translation (NAT). In
DHCP [6] a DHCP server maintains available IP addresses
which can be requested by clients for a certain time lease
time to be used. In NAT [9] a NAT router maps non Internet-
routable IP addresses onto routable IP addresses back and
forth. The most frequently used configuration is that the
NAT router has an official IP address and all the comput-

ers in the local network have non-routable ones. Many
ISPs combine both technologies. In the following we fo-
cus on the problem of dynamic routable addresses. NAT is
a general problem of P2P systems because it only supports
uni-directional connection establishment and is beyond the
scope of this paper.

The problems to address are: (1) How can universally
unique identifiers be mapped onto physical addresses in a
secure, decentralized, and efficient way? (2) With the pos-
sibility of changes of physical addresses a peer must be
able to detect whether it is still talking to the same en-
tity it intends to talk with. Gnutella is not affected by the
first problem since peers actively announce their availabil-
ity but at the cost of high bandwidth consumption because
of its constrained broadcast approach. However, any peer-
to-peer system actually should address the second problem
for security reasons to avoid rather simple denial-of-service
(DOS) attacks.

3. P-Grid in a nutshell

Since our approach is based on our P-Grid P2P lookup
system we will briefly introduce its basic concepts. it. P-
Grid [2] is based on a virtual distributed search tree: Each
peer only holds part of the overall tree, which comes into
existence only through the cooperation of individual peers.
Searching in P-Grid is efficient and fast even for unbalanced
trees [1] (O(log(n)), where n is the number of leaves). Un-
like many other peer-to-peer systems P-Grid is a truly de-
centralized system which does not require central coordina-
tion or knowledge. It is based purely on randomized algo-
rithms and interactions. Also we assume peers to fail fre-
quently and be online with a very low probability. Figure 1
shows a simple P-Grid.

auery(6, 100)

'@ o/ o (o 6| ?»

Figure 1. Example P-Grid

Every participating peer’s position is determined by its
path, that is, the binary bit string representing the subset of
the tree’s overall information that the peer is responsible for.
For example, the path of Peer 4 in Figure 1 is 10, so it stores
all data items whose keys begin with 10. For fault-tolerance
multiple peers can be responsible for the same path, for ex-
ample, Peer 1 and Peer 6. P-Grid’s query routing approach
is simple but efficient: For each bit in its path, a peer stores
a reference to at least one other peer that is responsible for
the other side of the binary tree at that level. Thus, if a peer

receives a binary query string it cannot satisfy, it must for-
ward the query to a peer that is “closer” to the result. In
Figure 1, Peer 1 forwards queries starting with 1 to Peer 3,
which is in Peer 1’s routing table and whose path starts with
1. Peer 3 can either satisfy the query or forward it to an-
other peer, depending on the next bits of the query. If Peer
1 gets a query starting with 0, and the next bit of the query
is also 0, it is responsible for the query. If the next bit is 1,
however, Peer 1 will check its routing table and forward the
query to Peer 2, whose path starts with 01. The P-Grid con-
struction algorithm [2] guarantees that peer routing tables
always provide at least one path from any peer receiving
a request to one of the peers holding a replica so that any
query can be satisfied regardless of the peer queried.

4. Protocol

This section defines the protocol for maintaining id-to-1P
mappings in P-Grid. In short the protocol works as follows:
Peers generate universally unique identifications locally and
store them along with their public key, their current IP ad-
dress and a cryptographic signature in P-Grid, i.e., on a cer-
tain number of peers since P-Grid replicates the stored in-
formation. Mapping an id onto an IP address then is done
by querying P-Grid using the receiver’s id as the key. If
a certain quorum of identical answers is returned the map-
ping is considered trustworthy and the peer is contacted. If
contacting the peer fails then the peer is either offline or
has changed its IP address. The requester can now either
assume that the peer is offline and give up or, in the latter
case, submit a new query to determine the new IP address.
If contacting the peer succeeds in either case, its public key
is used to determine whether the contacted peer really is the
one identified by the mapping or whether a different peer
reuses the address or a malicious peer tries an impersonation
attack. Our security concept is a combination of PGP-like
public key distribution and a quorum-based query scheme.

In detail the algorithm works as follows: Each peer
p is uniquely identified by a universally unique identifier
(UUID) Id,. This identifier is generated once at installa-
tion time by applying a cryptographically secure hash func-
tion to the concatenated values of the current date and time,
the current IP address addr, and a large random number.
Routing tables only hold these identifiers. Each peer p ad-
ditionally has a cache of mappings (Id;, addr;,TS;) (T'S;
denotes a timestamp) that it already knows. At bootstrap
each peer p also generates a private/public key pair D,/ E,
once. Then the algorithm for handling dynamic IP ad-
dresses works as follows (inserts and updates are done ac-
cording to the algorithm presented in [5]):

Bootstrap

1. pgenerates Id,, D,/ E,,.

2. At startup p determines its current IP address.

3. (Idp,addrp, E,, TSy, Dp(Idy, addry, E,, T'Sy)) (for
brevity denoted as tuple in the following is inserted
by p into P-Grid using Id, as the key (TS, prevents

replay attacks). Inserting in P-Grid means that the re-
quest is routed to a peer R; € R,. R, is the set of
replicas responsible for the binary path using Id, as
the key value (path(Id,)). If Id, already exists in the
P-Grid (though this is very unlikely) p is notified. If
S0, p generates a new Id,, and repeats this step.

4. The previous step is repeated R,,;, times and p waits
for confirmation messages from R,,;,, distinct peers to
prevent a malicious peer in , from distributing false
data to the other replicas in ®,.

5. As a result of the previous two steps the mapping will
be physically stored at peers in ,. Based on the ran-
domized algorithms that P-Grid uses we can assume
that the individual replicas R; € R, are independent
and they collude or behave Byzantine only to a degree
that can be handled by existing algorithms.

Peer startup

1. pstarts up and checks whether its addr), has changed.
If not the algorithm terminates. Otherwise the follow-
ing steps are taken.

2. A new mapping and a signature for this mapping
(Idp,addry, TSy, Dp(Id,, addr,, T'Sp)) is sent as an
update message to the P-Grid by p.

3. Upon receiving the update request the
R; check the signature by verifying that
(Ep(Dp(Idy,addry,,TS,)).Id, = Id, (thus only p
can update its mapping) and T'Sg, < T'S, (to prevent
replay attacks). If yes, the new mapping is stored,
otherwise an error message is returned.

Operation phase
p is up and running, has registered an up-to-date mapping
(Idp,addr,,TS,) and is ready to process requests.

1. preceives a request () from a peer q.

2. In case p can satisfy @ the result is returned to
g. Otherwise p finds out which peers py to for-
ward the query to according to P-Grid’s routing strat-
egy. Then it checks its routing table and retrieves
(Idy,,addry,,E,,, TS,) which had been entered
during the construction of P-Grid.

3. p generates a random number r, contacts p; and sends
E,, (r). As an answer py must send (D, (Ey,(r)))
and ¢ can check whether D, (E, (r)) =r. If yes, ps
is correctly identified, i.e., p really talks to the peer it
intends to, and @ is forwarded to py.

4. If not, then py has a new IP address (the case that
somebody tries to impersonate py is covered implic-
itly by the signature check above) and p sends a query
to P-Grid to retrieve the current addr,, using Id,, as
the key.

5. pcollects all answers t; = (Id,,, E,,,addry,,,TS,,,
Dy, (Id,,,E,,,addr,,,TS,,)) it receives from the
R; € R,,) (if extended security is required then the
R; should sign their answers, i.e., send (;, Dy, (t;))).
p has to collect at least R,,,;, answers to detect mis-

informed or malicious peers, i.e., checks whether a
certain quorum of the answers is identical (R,;n 1S
defined by each individual p according to its local re-
quirements for trustworthiness of the reply). Other-
wise the query is repeated a certain number of times
before aborting.

— As an optimization the quorum can be avoided
under certain circumstances. If p already knows
E,,, e.g., from the construction of the P-Grid
or because it has already done a certain num-
ber of (quorum-based) queries for E,, that
have resulted in identical answers, so that it
can assume that its E, ., then it can imme-
diately check the validity of the answer by
Ey,(Dp,(Idy,, By, ,addry,, TSy,)).Id,, =
ti.Dyp,.

— The scheme can be further optimized (and made
more robust and secure) by having all peers store
the E,’s that they receive.

6. Now p can proceed with step 3 and if this is successful

penters (Idy, ,addry,, E,,,TS,,)) inits local cache.

5. Processing queries

This section illustrates how the query processing will
work with the protocol of Section 4 in place. Figure 2 shows
a typical state of a P-Grid after some processing.

LEGEND
Presently online
Prsemly offnline 0 L
Up-to-date cache
1212
sdecahe 00 01 10 1
[2[121314
000, 001 010 011 100, 101 0 :114
10 :1113
12121314
@D O W@l |@ler | @[es |[@3[won | % 213

1:12,13 |1 :82 1:212 11112 0 :47 0 :59
01 :5,10 01:3,10 00:94 00:19 11:212 1:212
00L: 9.4 000: 1,7 011: 310 010: 5,14 101:813 100: 6,11

Dl (D23 (B[4 |[10]67 G @@
1:1213 |1 :613 1:813 ||1 :68 113 0 149

01 :514 01 :1014 00:79 00:17 11:212 11:212
001: 9,4 000: 1,7 011: 3,10 010:5,14 101: 8,13 100: 6,11

Figure 2. P-Grid before Query(01*) at P;

Peer P; is denoted by 7 inside an oval. Online peers are
indicated by shaded ovals, offline peers by unshaded ovals.
We will use a query Q(01x) at P; for our example. P; holds
the public key and latest physical address mapping about P;
(updated by P;). These are shown in the shaded rectangle in
the upper-right corner. In this example, we follow the con-
vention that the peers are represented by paths of a length
of 4 bits. For example, information about P; (e.g, its public
key or latest id-to-IP mapping) can be obtained by Q(Py),
i.e., Q(0001). Under this convention, since P; is responsi-
ble for the search path 000, it stores information relevant to
000, and routing references for paths starting with 1, 01 and
001, so that queries with these prefixes may be forwarded
to respective peers for further processing. These references
to other side of the P-Grid subtrees at all depths form P;’s

routing table. The cached physical address of these refer-
ences may be up-to-date (for example Pj5) or stale (staled
entries are underlined, for example, Ps).

A peer P, decides that it has failed to contact peer P,
if one of the following happens: (1) No peer is available
at the cached address. In this case, P, trivially determines
that P; is unavailable. (2) The contacted peer fails in the
authentication: If any peer Py is present at the physical
address as cached by P, for P,, P, will use P;’s public key
to verify whether Py is indeed P;. If Py fails the identity
test, P, concludes that it has failed to contact Ps. Since only
P, knows its private key, only P, can pass the identity test.

In either case an up-to-date mapping must be obtained
by querying the P-Grid. We have investigated two querying
strategies:

Isolated-Query: Upon receiving a query a peer checks
whether it can answer the requests or else forwards the
query to at least one of the peers in its routing table accord-
ing to P-Grid’s routing algorithm. If none of these peers can
be contacted, the query is abandoned and fails.
Recursive-Query: If a peer fails to contact any of the peers
in its routing table, it initiates a new query to discover the
latest “identity-to-address™ mapping of the peers in the rout-
ing table, and if such a peer can be located, the query is then
continued (forwarded).

While the P-Grid is in the state as shown in Figure 2,
assume that P; receives a query Q(01x). The query may
be for searching any information in P-Grid, either informa-
tion about some participating peer or any other information.
In this example situation, P; fails to forward the query to
P5 and P4 since the cache entries are stale. The Isolated-
Query algorithm fails immediately.

In the recursive query version, a peer that has failed to
contact any of the peers to which it could forward the query,
first tries to discover the latest addresses for those rout-
ing table entries. In our example, P; initiates Recursive-
Query(Ps), i.e., Q(0101), which needs to be forwarded to
either P5 or Py4. This fails again. P; may then initiate
Recursive-Query(Py4), i.e., (Q(1110)), which needs to be
forwarded to P;» and (or) Pi3. P is off-line, so irrespec-
tive of the cache being stale or up-to-date, Q(P14) fails to
be forwarded to Py5. Pi3 is online, and the cached phys-
ical address of P53 at P; is up-to-date, so Q(Pi4) is suc-
cessfully forwarded to Py3. Pi3 needs to forward Q(P14)
either to P, or Pi». It fails to forward it to P;5. Further,
P, fails to forward it to P, because its cached entry for
P; is stale. Pi3 thus initiates another sub-query, namely
Recursive-Query(P,), i.e., (Q(0010)). It may also initiate
Recursive-Query(Pi2) as well. From Pi3, Q(P) is for-
warded to P5. From Ps, Q(P,) is forwarded to one of P;
and Py. Assume Py replies (though in parallel it may be
forwarded from P; to P,, Py and then eventually be an-
swered). Thus Py 3 learns P,’s location and updates it in its
cache. Py3 also starts processing and forwards the parent
Recursive-Query(Pi4) to P,. P, provides Py4’s up-to-date
address, and P; updates it in its cache (directly or via Py 3,
depending on the implementation).

After Query(01*) @ P,

0 1
00 01 10 11
(@[12131
000, 001 010, 011 100, 101 0 14
1011113
(12121314
OIE (923 Ad[ss |[D]er AD[se |[A3[a0m % 2&3

1:1213 (|1 :82 1 :212 11112 0 :47 0 :59
01 :5,10 01:3,10 00 :94 00:19 11:212 1:212
001: 94 000: 1.7 011: 3,10 010: 5,14 101: 8,13 100: 6,11

Dt (D23 (B[4 |[10]67 (®se |[(B[2wn
11213 |1 :613 1:813 ||1 :68 113 0 :49

01:514 01 :1014 00:7.9 00:17 11:212 1212
001 9.4 000:1,7 011:310 010:514 101:813 100: 6,11

Figure 3. P-Grid after Query(01*) at P;

Having learned Py4’s current physical address, P; now
forwards the original query Q(01x) to Pi4. In this case,
not only is the original query satisfied, but also P; has an
opportunity to learn and update P5’s physical address, since
Py, is responsible for Ps’s latest physical address. Thus,
apart from successfully replying to the original query, P;
updates the physical address for P4, and possibly of Ps.
Further, because of the initiated child queries, P;3 updates
its cached address for P,. The final state with several caches
updated after the end of Q(01x) at P, is shown in Figure 3.

6. Analytical results

Due to the limited space available we will only provide
some results from our analysis. The complete analysis and
results can be found in [11]. We investigate the performance
of queries without and with recursion, and study the im-
provement in the success rate and the additional effort in-
curred, as the system parameters change. We give results
for the case where the P-grid tree has n = 27 leaves, and all
peers have 4 references cached at any depth.

Figure 4 shows the failure probability of queries un-
der the assumption that peers are online with probability
pon, = 0.8 while varying the probability of local cache en-
tries being stale (pgyn).

04

Isolated query
Recursive query —-—

Probability of peers being online p_on = 0.8
Number of replicas r = 4
Depth of P-Grid d = 7
03 /

Failure probability

xR

0 0.1 02 03 0.4 05
Probability of stale entries in local cache (p_dyn)

Figure 4. Probability of query failure

The failure probability of non-recursive queries in-
creases rapidly with an increase in payn. With recursion,

however, the failure probability is significantly lower, since
intermediate failures trigger recursive queries, leading to
self-healing effects, and thus to the eventual success of the
original query. The benefits of the recursion, are dual, since
apart from reducing the probability of failure it induces self-
healing, i.e., rectifying stale cache entries.

Figure 5 shows the the increased effort by a factor in
terms of the messages in the recursive version of the query
(Y-axis) with variation of pgy,, for pon, = 0.6 and p,, = 0.8
The expected effort for the isolated-query in these cases is
fixed, and equals 14 messages.

100

90

poon: peers b
Number of replicas r = 4
Depth of P-Grid d = 7

80

70

60

50

40

|

|

|

| |

|

) |
]

;)

0 0.1 0.2 03 04 0.5
Probability of stale entries in local cache (p_dyn)

Figure 5. Additional effort for recursion

Additional effort for recursive case

0

The results are intuitive: With higher p,,, and lower
Payn, Tailure rates are low, and the additional effort in us-
ing recursion is marginal. Detailed results on further failure
probabilities and self-healing properties of the algorithm
and are provided in [11].

7 Related Work

Freenet [4] originally proposed address resolution keys
stored inside Freenet itself to cope with dynamic IP ad-
dresses. However, this approach has been given up in fa-
vor of a dynamic DNS service such as DynDNS.org. Dyn-
DNS.org [7] is a service that allows a user to map a dynamic
address to a static hostname in some domains and to update
this mapping via a HTTP interaction protected by a user-
name/password scheme. Besides DynDNS many similar
services exist [14]. In theory even DNS [3] itself could now
be used for maintaining dynamic IP addresses. [16] added
support for dynamically updating a nameserver’s database
to the original design of DNS. Access to the database is
based on the IP address of the requester. [15] added trans-
actional signatures (TSIG) based on symmetric cryptogra-
phy to make updates more secure and [8] finally introduced
a fully-flexed infrastructure for secure DNS updates based
on public-key cryptography. However, all these schemes re-
quire access to name servers and incur a considerable con-
figuration and management overhead. In order to handle
dynamic physical addresses securely we introduced a self-
organizing public key infrastructure. PGP [10] is compara-
ble to our concepts because it offers a similar, decentralized
approach.

8. Conclusions

This paper described a decentralized, self-maintaining,
light-weight, and secure name service that applies the same
P2P system that uses the name service for maintaining the
service’s database. We have demonstrated that such an self-
referencing approach is possible and that our algorithm is
robust and applicable in unreliable environments and oper-
ates well even if we assume low online probabilities. The
service is based on the P-Grid P2P system and applied in
P-Grid itself to remedy the problem of dynamic peers ad-
dresses in routing tables. We have defined a generic pro-
tocol that can also be applied and other systems, described
the query processing strategy to support the protocol and
provided analytical results on the performance of the algo-
rithm. The service offers a sufficient level of security by
combining a PGP-like approach for circulating public keys
with a quorum-based query scheme that provides robustness
against cheating peers.

References

[1] K. Aberer. Scalable Data Access in P2P Systems Using Un-
balanced Search Trees. In WDAS, 2002.

[2] K. Aberer, M. Hauswirth, M. Punceva, and R. Schmidt. Im-
proving Data Access in P2P Systems. IEEE Internet Com-
puting, 6(1), 2002.

[3] P. Albitz and C. Liu. DNS and BIND. O’Reilly & Asso-
ciates, 2001.

[4] 1. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. In Designing Privacy Enhancing Technologies: In-
ternational Workshop on Design Issues in Anonymity and
Unobservability, number 2009 in LNCS, 2001.

[5] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly
Unreliable, Replicated Peer-to-Peer Systems. In ICDCS,
2003.

[6] R. Droms. Dynamic Host Configuration Protocol.
RFC2131. Network Working Group, IETF, 1997.

[7]1 Dynamic DNS Network Services, 2003. http://ww.dyndns.
org/.

[8] D. Eastlake. Domain Name System Security Extensions.
RFC2535. Network Working Group, IETF, 1999.

[9] K.Egevang and P. Francis. The IP Network Address Transla-
tor (NAT). RFC1631. Network Working Group, IETF, 1994.

[10] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Asso-
ciates, 1994.

[11] M. Hauswirth, A. Datta, and K. Aberer. Handling ldentity in
Peer-to-Peer Systems. Technical Report 1C/2002/67, Ecole
Polytechnique Fédérale de Lausanne (EPFL), 2002.

[12] C. E. Perkins, B. Woolf, and S. R. Alpert. Mobile IP Design
Principles and Practices. Prentice Hall PTR, 1998.

[13] P. H. Salus, editor. Big Book of IPv6 Addressing RFCs (Big
Book). Morgan Kaufmann, 2000.

[14] D. E. Smith. Dynamic DNS, May 2002.
technopagan.org/dynamic/.

[15] P. Vixie, O. Gudmundsson, D. E. 3rd, and B. Welling-
ton. Secret Key Transaction Authentication for DNS (TSIG).
RFC2846. Network Working Group, IETF, 2000.

[16] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dy-
namic Updates in the Domain Name System (DNS UP-
DATE). RFC2136. Network Working Group, IETF, 1997.

http:/Avww.

