EFPL Technical Report 1C/2004/22

Experimental evaluation results of an advanced
DHT-based peer-to-peer system®

Karl Aberer, Manfred Hauswirth, Roman Schmidt

Swiss Federal Institute of Technology Lausanne (EPFL)
Distributed Information Systems Laboratory
1015 Lausanne, Switzerland
{Karl.Aberer, Manfred. Hauswirth, Roman.Schmidt}@epfl.ch

Abstract

P-Grid is a decentralized DHT-based peer-to-
peer system with logarithmic search complex-
ity. As it is intended to provide a platform
for distributed information management be-
yond mere file-sharing it supports an update
functionality with lazy consistency guaran-
tees, identity management disentangling the
DHT from the underlying networking infras-
tructure, and decentralized load balancing. In
this paper we first give a brief overview of
the theoretical foundations of P-Grid and the
supporting functionalities. Then we highlight
some interesting implementation details and
present, briefly some experimental evaluation
results. To our knowledge this is one of the
first reports on experimental evaluation re-
sults of a structured peer-to-peer system in
a real-world networking environment.

1 Introduction

P-Grid is a distributed data structure based on the
principles of distributed hash tables (DHT) [7]. As any
DHT approach P-Grid is based on the idea of associ-
ating peers with data keys from a key space. Without
constraining general applicability we will only consider
binary keys in the following. In contrast to other DHT
approaches we do not impose a fixed or maximal length
on the keys.

The work presented in this paper was supported (in part) by
the European Commission under contract FP6-507483, project
DIP (Data, Information, and Process Integration with Semantic
Web Services).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

In P-Grid peers refer to a common underlying tree
structure in order to organize their routing tables. In
the following we will assume that the tree is binary.
This is not a fundamental limitation as a generaliza-
tion of P-Grid to k-ary structures has been introduced
in [4], but will simplify the presentation. Note that the
underlying tree does not have to be balanced but may
be of arbitrary shape, thus facilitating to adapt the
overlay network to unbalanced data distribution [1].

Each peer p € P is associated with a leaf of the
binary tree. Each leaf corresponds to a binary string
m € II. Thus each peer p is associated with a path
m(p). For search, the peer stores for each prefix 7 (p, 1)
of w(p) of length [a set of references p(p,l) to peers

g with property 7(p,l) = w(q,l), where T is the bi-
nary string = with the last bit inverted. This means
that at each level of the tree the peer has references to
some other peers that do not pertain to the peer’s sub-
tree at that level. Multiple peers are required for each
level to compensate for failing peers. This enables the
implementation of prefix routing for search.

Each peer stores a set of data items d(p). Ideally for
d € §(p) the key k(d) of d has n(p) as prefix. However,
we do not exclude that temporarily also other data
items are stored at a peer, that is, the set §(p, 7(p))
of data items whose key matches 7(p) can be a proper
subset of §(p). In addition, peers also maintain refer-
ences o(p) to peers having the same path, i.e., their
replicas.

In a stable state the set of paths of all peers is prefix-
free and complete, i.e., no two peers p and ¢ exist such
that w(p) C «w(q), i-e., w(p) is a proper prefix of w(q)
and if there exists a peer p with path 7(p), then there
also exists a peer q with w(p) = 7(q). This guarantees
full coverage of the search space and complete parti-
tioning of the search space among the peers. All data
stored at a peer then matches its path.

1.1 Search in P-Grid

P-Grid uses a prefix routing strategy for search. In
the following, the notation p 7k ¢ means peer p queries
peer g for key k. To search for a key k starting at peer

EFPL Technical Report 1C/2004/22

q the following forwarding algorithm is used:

Upon receiving the event p 7k ¢ from p, peer ¢
checks whether its path is a prefix of k. If yes, it
checks whether it can return a query result from its
data store. If not, it selects a peer r having a prefix
of maximal length with x from its routing table and
issues a query event q 7k r, i.e., the search continues
at r.

The algorithm always terminates successfully: Due
to the definition of p(p,l), this prefix routing strategy
will always find the location of a peer at which the
search can continue (use of completeness) and each
time the query is forwarded, the length of the com-
mon prefix of w(p) and k increases. It is obvious that
this search algorithm is efficient (O(log(|II|))) for a
balanced tree, i.e., all paths associated with peers are
of equal length. In [1] we show that due to the prob-
abilistic nature of the P-Grid approach this does not
pose a problem. The expected search cost measured by
the number of messages required to perform the search
remains logarithmic, independently how the P-Grid is
structured.

2 Implementation

P-Grid is implemented in Java using an XML-based
protocol with compression. The implementation is
based on the algorithms presented in [2] to construct
and maintain a storage and replication load-balanced
tree, i.e., peers store approximately the same amount
of data keys and data keys are stored (replicated) ap-
proximately equally often at peers.

P-Grid’s XML-based protocol is defined in [9]. We
decided to base the P-Grid protocol on XML to en-
able interoperability with other implementations. The
main drawback, however, is the overhead incurred by
XML which causes large message sizes which may lead
to high bandwidth consumption. Thus the protocol is
not exchange “in-the-clear” but uses ZLIB compres-
sion to reduce bandwidth consumption to about 3-5%
of the uncompressed size. Although this increases the
CPU usage for receiving and sending messages, band-
width consumption is the more critical resource.

The protocol consists of 6 message types: Boot-
strap, Exchange, Query, QueryReply, SearchPath, and
SearchPathReply. The Bootstrap message is used by
peers joining a P-Grid the first time to learn about
some other participating peers. Exchange messages
are used to construct and maintain a P-Grid. Query
messages represent search requests and QueryReply
messages are their responses containing the found
data. SearchPath and SearchPathReply are required
for load balancing. SearchPath is sent if a peer wants
to become another peer’s replica and SearchPathReply
is returned if a peer suitable for replication is found.
The protocol also defines the handshake between two
peers after a connection was established. The mes-
sage sizes vary from a few bytes for Bootstrap, Query,
and SearchPath messages to more than 100 kb for Ex-
change, QueryReply, and SearchPathReply messages

depending on the amount of stored data keys of a peer
respectively the amount of matching data keys for a
query.

During P-Grid construction and maintenance data
key sets may have to be exchanged frequently be-
tween two peers and can be of considerable size de-
pending on the amount of data a peer stores. Thus
the protocol uses algebraic signatures [5, 6] identifying
equal data key sets at peers and thus reduces network
traffic. Data key set signatures reduce the amount
of transmitted data keys to about 70% of the origi-
nal amount. The currently implemented (simple) ap-
proach of transmitting the complete sets if a difference
is detected will be improved in the next version of the
software. We will partition the data sets and use alge-
braic signatures on the subsets to focus the detection
of changes and thus minimize the amount of informa-
tion that needs to be exchanged.

The implementation is structured into two parts:
The P-Grid library provides all functionality required
to construct and maintain a P-Grid, and also imple-
ments the search algorithm. The P-Grid application
layer uses this library and implements a file sharing
application for performing tests and experiments with
a graphical user interface. The library is intended for
developers who want to use P-Grid as middleware and
is well documented with usage examples and Java API
documentation. The file-sharing application (Gridella)
is intended as an example to support developers to im-
plement their own applications and demonstrates the
capabilities of P-Grid. Gridella shares files and en-
ables full-text search on file names. Matching files
are presented via the GUI and can be downloaded.
Full-text search is achieved by indexing suffixes. Al-
though this may seem inefficient at first glance, P-Grid
is powerful enough to deal even with a high number
of inserts. The implementation and the source code of
P-Grid and Gridella are available for Java platforms
at http://www.p-grid.org/.

3 Experimental results

This section presents some of the the results of our
experiments with the P-Grid implementation. The
experiments aimed at validating the mathematical re-
sults presented in [2] in a real-world setting and to test
the quality, correctness, and robustness of the proto-
col. A further motivation was to compare P-Grid with
other implemented P2P systems such as Gnutella, es-
pecially in respect to bandwidth consumption as the
most critical resource.

3.1 Setup

The experiments were performed with 32 peers run-
ning on 16 Linux computers in a 100 MBit local area
network. Each peer shared 100 files resulting in 1700—
1900 data items (depending on the file names) initially
managed by each peer. Data items represent shared
files including a data key generated from the file name

EFPL Technical Report 1C/2004/22

or from a suffix of the file name. Peers were willing
to manage at most 2 x mgore = 10000 data items, the
maximum number of recursive exchanges recmaz was
3, and the probability for splitting the tree pgyix was
0.1. The split probability influences the speed of con-
structing a P-Grid. pspiiz = 0.1 means that a path is
split with a probability of 10% only if all other require-
ments for splitting (sufficient number of data items,
etc.) are fulfilled. Peers store a maximum of 10 fid-
get peers (fidgetmaz)—used for introducing additional
randomization— and 10 references for each level of the
P-Grid tree (refmaz) in their routing tables.

The parameters bl and prob. influence the load bal-
ancing process to avoid very expensive oscillatory be-
havior in terms of maintenance without making the
process too slow. In the experiment we used bl = 0.1
and prob. = 0.25 so that peers have to gather at least
10 statistic entries per level (minchange) before initi-
ating load-balancing.

The experiment ran between one and several days
with an average startup period between 2 and 3 hours.
The startup period is the time to build-up a P-Grid
from scratch. At the beginning peers have no path,
manage only their shared files, and only know one peer
for bootstrapping. At the end of the startup period the
paths of the peers have stabilized and the operation
period of the experiment starts. Peers were supposed
to be online all the time to avoid additional efforts
incurred by compensating for unavailable peers (this
was done in another experiment).

3.2 P-Grid construction

The construction algorithm tries to achieve three
goals: (a) a balanced binary tree, (b) balanced repli-
cation factor of paths and data keys, and (c) balanced
distribution of data keys among peers.

A Dbinary tree resulting from one of our experiments
is shown in Figure 1. The number of peers per path is
given in the nodes of the tree and the number of peers
responsible for a path prefix is given at the edges of
the tree.

@ ... 3 peers at
this node

of ~opousin
the subtree

Figure 1: A resulting virtual binary P-Grid tree

The tree seems to be unbalanced as the tree depth is
unequal for some paths, e.g., the maximum tree depth
for ‘O*’ is 6 whereas the depth for ‘1*’ is 3, and the
number of peers per path differs (e.g., 10 peers for path
‘10*” and only 4 peers for path ‘11*’). This imbalance

is due to the uneven distribution of data keys in the
experiment. About 65% of the data item keys began
with ‘0’ and more than 80% of these data items have
a key prefix of ‘00’ leading to the longer path for ‘00*’.
A similar data key distribution is responsible for the
unbalance of path ‘10*’ and ‘11°. Achieving a tree of
this shape, however, was intended to balance memory
and replication loads. Despite this unbalanced tree
shape, search costs remain logarithmic as shown in [1].
Informally, the reason is that path resolution does not
work bit-by-bit but may resolve longer bit strings at
one peer thus on average providing logarithmic search
complexity.

The tree also is not prefix-free: 1 had no path, 3 had
path ‘0’, 2 peers had path ‘00000’, and 1 peer had path
‘1’. This also was expected because due to the choice
of parameter mgs .. the amount of data items in the
P-Grid was not high enough to create a prefix-free tree
(peers have to manage more than my;... data items to
split their path and specialize). This negative effect of
an “under-loaded” P-Grid may cause that some data
keys may not be found. However, our experiments
and simulations have shown that this can easily be
compensated by repeating a query two times starting
at a random peer selected from the fidget list.

In Figure 1 the replication factor of peers responsi-
ble for paths is between 3 and 5. The peer responsible
for path ‘000000’ is replicated by the two peers at path
‘00000’ and the peers at paths with prefix ‘0’ could still
be replicated by the peers at path ‘0’ if further data
items become available. The average replication factor
for data items is between 4 and 5. Fach peers man-
ages between 7000 and 9500 (initially 1700-1900 data
items). This means the average storage load is approx.
80%.

This and other construction experiments performed
validated our theoretical results.

3.3 Search performance

For testing search performance we generated search re-
quests at random peers and analyzed the results. The
names we inserted have a common substring ‘-az-’ and
the same file extension ‘.pdf’ enabling searching for all
files in P-Grid. Unfortunately this also leads to the
unbalanced distribution of data keys. However, this
can also occur in real-world settings. Searches were
initiated during the operation time with all possible
suffixes of the common substrings to generate different
search keys processed by different peers. The search
results always provided the complete result set with
the expected logarithmic number of messages to com-
plete the requests.

3.4 Bandwidth consumption

Network bandwidth consumption was measured sepa-
rately for the startup phase and the stable operation
phase. The amount of shared files was constant and
the measurements do not include any traffic arising

EFPL Technical Report 1C/2004/22

from search requests and their responses as we wanted
to find out about the maintenance “noise” of the im-
plementation.

During P-Grid construction the overall network
bandwidth usage is about 60-70kb/sec leading to an
average bandwidth of about 2.0 kb/sec per peer. De-
pending on the path of a peer the minimum bandwidth
consumption of a peer is about 300 bytes/sec and the
maximum is approximately 3.0 kb/sec. This network
traffic is fairly low and can easily be tolerated. If com-
pression was not used the overall network bandwidth
consumption would have been 2.0-3.0 Mb/sec and the
average peer bandwidth consumption would have been
approx. 80.0 kb/sec. The experiment shows that pro-
tocol compression is highly efficient and reduces the
network bandwidth consumption down to 2.5%.

During the operation of P-Grid the network band-
width consumption is significantly smaller because
peers are not changing their paths anymore and most
of the data items are already at the responsible peers.
The overall P-Grid maintenance traffic using the com-
pressed protocol is about 11-12 kb/sec meaning an av-
erage bandwidth consumption of about 350 bytes/sec
per peer. The minimum bandwidth consumed was ap-
prox. 150 bytes/sec and the maximum was 1.5 kb/sec.
The bandwidth consumption is reduced down to ap-
prox. 4% by compression.

To put these results in perspective we compare them
with Gnutella. To our knowledge no implementation-
based results exist for other DHTs that we could use
for comparison.

Most of the available analyses of Gnutella net-
work traffic [8, 10] are based on the original protocol.
The bandwidth consumption varies from 6 kBit/sec
per connection [8] up to 3.5 MBit/sec for a single
peer [10]. A bandwidth consumption of 6 kBit/sec per
connection results in a bandwidth consumption of 3
kb/sec per peer assuming 4 open connections, i.e., the
bandwidth consumption of a Gnutella peer is between
3.0 and 437.5 kb/sec for network maintenance and
searches. Compared to P-Grid’s startup period the
bandwidth consumption of Gnutella is about 1.5-218
times higher and about 8.5-1250 times higher during
normal operation. [8] showed that Gnutella’s mainte-
nance traffic can make up more than 50% of the overall
network traffic, i.e., 1.5-218.8 kb/sec. Compared to P-
Grid’s maintenance traffic during normal operation the
bandwidth consumption of Gnutella is approximately
4.2-625 times higher.

4 Conclusions

The practical experiments we did with our P-Grid im-
plementation validated our theoretical findings and al-
lowed us to address some of the problems, for exam-
ple, protocol message size, that can only be assessed
in detail when theory is put into practice. Although
the theoretical foundations of P2P systems are devel-
oping rapidly only very few real-world measurements
and experiments exist. To our knowledge no other

experimental implementation-based study for DHTs
exists so far. Experiments, however, are necessary
since in our opinion a number of assumptions under-
lying current research do not hold in a real-world net-
work, for example, the problems caused by changing
addresses/identification as discussed in [3]. Our next
steps in the development of P-Grid will be the addition
of semantic search (currently under development) and
further experiments to include query traffic and loads.
Our long-term goal is to provide a fully functional mid-
dleware layer for distributed information systems.

References

[1] Karl Aberer. Efficient Search in Unbalanced,
Randomized Peer-To-Peer Search Trees. Tech-
nical Report I1C/2002/79, EPFL, 2002. http:

/ /www.p-grid.org/Papers/TR-I1C-2002-79.pdf.

[2] Karl Aberer, Anwitaman Datta, and Manfred
Hauswirth. The Quest for Balancing Peer Load in
Structured Peer-to-Peer Systems. Technical Re-
port 1C/2003/32, EPFL, 2003.

[3] Karl Aberer, Anwitaman Datta, and Manfred
Hauswirth. Efficient, self-contained handling of
identity in Peer-to-Peer systems. TKDE, 2004.
To appear.

[4] Karl Aberer and Magdalena Punceva. Efficient
Search in Structured Peer-to-Peer Systems: Bi-

nary v.s. k-ary Unbalanced Tree Structures. In
DBISP2P, 2003.

[5] W. Litwin, R. Mokadem, and S.J. T. Schwarz.
Disk Backup Through Algebraic Signatures in
Scalable and Distributed Data Structures. In
WDAS, 2003.

[6] W. Litwin and S.J. T. Schwarz. Alge-
braic Signatures for Scalable Distributed
Data Structures. Technical report, CE-

RIA, 2002. http://ceria.dauphine.fr/
FileSignatureCalculationforSDDS-thomas2.pdf.

[7] C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing Nearby Copies of Replicated Objects in
a Distributed Environment. In SPAA, 1997.

[8] M. Ripeanu, I. Foster, and A. Iamnitchi. Map-
ping the Gnutella Network: Macroscopic Proper-
ties of Large-Scale Peer-to-Peer Systems. IEEFE
Internet Computing, 6(1), 2002. http://people.
cs.uchicago.edu/~matei/PAPERS/ic.pdf.

[9] Roman Schmidt. The P-Grid protocol. Technical
report, EPFL, 2004.

[10] K. Sripanidkulchai. The Popularity of Gnutella
Queries and TIts Implications on Scalabil-
ity, March 2001. http://www.cs.cmu.edu/
~kunwadee/research/p2p/gnutella.html.

