
DIP
Data, Information and Process Integration with Semantic Web Services

FP6 – 507483

Deliverable

WP4: Service Usage

D4.19

QoS-enabled Service Discovery Component
Prototype 2 Report

Le-Hung Vu (EPFL), Fabio Porto (EPFL), Othman Tajmouati (EPFL),
Sebastian Gerlach (EPFL)

December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

Deliverable 4.19 ii December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

Summary

In the upcoming Semantic Web and service oriented architectures, Quality of Service
(QoS) is among the most important searching and ranking criteria influencing the user
in the selection of a service among several functionally equivalent ones. This report
includes the installation instruction and a brief description of the second (and final)
prototype of the QoS-enabled Semantic Web service discovery component, following
the specification in the Deliverable D4.17 [4].

The QoS-enabled Semantic Web service discovery is the process of automatically
finding Web services that fulfill a certain user goal in terms of their quality of service
(QoS) criteria. Typically, users express a goal by specifying their functional and QoS
requirements the Web services should provide in order to achieve it. These requirement
specification can either be written by the users given his prior knowledge of the WSML
language or be generated automatically from dedicated graphical user interfaces of
the search engine. We extend goals and Web service descriptions to support the
specification of QoS parameters and provide a discovery component which is capable
of combining both QoS and functionality-based service discovery into one integrated
module.

Regarding the development of exploitable tools, this report and its associated QoS
discovery prototype has the following contributions:

• It implements the most important functionalities of a QoS discovery component:
(1) select the services fulfilling user’s QoS requirements by doing the semantic
matchmaking between a list of services against the submitted user goal; (2)
perform the service ranking given various user’s preferences and estimated QoS
values of the services from the reports of reputable users; (3) parallelize the most
expensive steps of the discovery process to enable high scalability.

• The developed component could be used in two ways: (1) as a stand-alone
service discovery application which includes the capability of the functionality-
based service discovery component; (2) as a discovery module to be plugged-in to
another system, for example, the WSMX or the WSMO Studio framework. The
implementation of our QoS discovery prototype conforms to the WSMX/DIP
API, making it be easy to use for the interested DIP partners and be inter-
operable with the other DIP tools such as the WSMO Studio.

• A parallel query processing system, named CoDIMS, is used to parallelize the
operations of the QoS Discovery component. The CoDIMS-D (for Discovery)
system leverages the discovery functionality to cope with thousands of Web ser-
vice descriptions and multiple user requests.

• We also provide a list of WSMO ontologies: upper ontologies for QoS discov-
ery and ranking algorithms, full-fledged working WSML Web service and goal
descriptions, as well as the dedicated QoS and ranking ontologies for each devel-
oped example. These are useful for the demonstration of the modeling of QoS
requirements and offerings in various realistic application scenarios.

Therefore, this report and its associated QoS discovery prototype are relevant
for the following audience: the use case partners, the WSMO, WSML and WSMX
developing groups, the developers and IT experts who are interested in technological

Deliverable 4.19 iii December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

solutions for Semantic Web service discovery based on QoS and/or non-functional
properties criteria. In the DIP framework, this report can be of the interests of the
following partners:

• WP1 - to consider the extensions of the WSMO model to support QoS parameter
modeling more explicitly.

• WP2 - requirements for the repository interface for retrieving Web service de-
scriptions and ontologies as input parameters for the discovery process.

• WP8 - use case partner defining a B2B Telecom case study with QoS.

• WP10 - use case partner defining an e-banking case study with QoS.

• Other partners interesting in QoS-based Semantic Web service discovery and its
applications.

Disclaimer: The DIP Consortium is proprietary. There is no warranty for the accuracy
or completeness of the information, text, graphics, links or other items contained within
this material. This document represents the common view of the consortium and does
not necessarily reflect the view of the individual partners.

Deliverable 4.19 iv December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

Document Information

IST Project
Number

FP6 – 507483 Acronym DIP

Full Title Data, Information, and Process Integration with Semantic Web Services
Project URL http://dip.semanticweb.org/
Document URL
EU Project Officer Werner Janusch

Deliverable Number 4.19 Title QoS-enabled Service Discovery Component
Prototype 2 Report

Work Package Number 4 Title Service Usage

Date of Delivery Contractual 31-Dec-2006 Actual 31-Dec-2006
Status version 0.1 final ¤
Nature prototype ¤ report £ dissemination ¤ ontology ¤
Dissemination
Level

public £ consortium ¤

Authors (Partner) Le-Hung Vu (EPFL), Fabio Porto (EPFL), Othman Tajmouati (EPFL),
Sebastian Gerlach (EPFL)

Resp. Author
Le-Hung Vu, Fabio Porto E-mail lehung.vu@epfl.ch

fabio.porto@epfl.ch
Partner EPFL Phone +41 (21) 693-7573,+41.21.693.52.53

Abstract
(for dissemination)

This report includes the installation instruction and description of the imple-
mented features of the final prototype of the QoS-enabled discovery component.

Keywords Semantic Web service, SWS, service discovery, QoS, Goal,API

Version Log
Issue Date Rev No. Author Change
30-11-2006 1 Le-Hung Vu First draft
1-12-2006 2 Le-Hung Vu,

Fabio Porto,
Othman Taj-
mouati

v 1.0 - First complete version of the report

Reviewers
Ozelin López E-mail ozelin@isoco.com
Partner ISOCO, Spain Phone
Maciej Zaremba E-mail maciej.zaremba@deri.org
Partner DERI Galway,

Ireland
Phone

Deliverable 4.19 v December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

Project Consortium Information

Partner Acronym Contact
National University of Galway NUIG Dr. Sigurd Harand

Digital Enterprise Research Institute
(DERI)
National University of Ireland, Galway
Galway
Ireland
E-mail: sigurd.harand@deri.org
Tel: +353 91 495112

Fundacion De La Innovacion.Bankinter Bankinter Monica Martinez Montes
Fundacion de la Innovation. BankInter,
Paseo Castellana, 29
28046 Madrid,
Spain
Email: mmtnez@bankinter.es
Tel: 916234238

British Telecommunications Plc. BT Dr. John Davies
BT Exact (Orion Floor 5 pp12)
Adastral Park Martlesham
Ipswich IP5 3RE,
United Kingdom
Email: john.nj.davies@bt.com
Tel: +44 1473 609583

Swiss Federal Institute of Technology,
Lausanne

EPFL Prof. Karl Aberer
Distributed Information Systems Laboratory
École Polytechnique Féderale de Lausanne
Bât. PSE-A
1015 Lausanne, Switzerland
E-mail : Karl.Aberer@epfl.ch
Tel: +41 21 693 4679

Essex County Council Essex Mary Rowlatt,
Essex County Council,
PO Box 11, County Hall, Duke Street,
Chelmsford, Essex, CM1 1LX,
United Kingdom.
E-mail: maryr@essexcc.gov.uk
Tel: +44 (0)1245 436524

Forschungszentrum Informatik FZI Andreas Abecker
Forschungszentrum Informatik
Haid-und-Neu Strasse 10-14
76131 Karlsruhe
Germany
E-mail: abecker@fzi.de
Tel: +49 721 96540

Institut für Informatik,
Leopold-Franzens Universität Innsbruck

UIBK Prof. Dieter Fensel
Institute of computer science
University of Innsbruck
Technikerstr. 25
A-6020 Innsbruck, Austria
Email: dieter.fensel@deri.org
Tel: +43 512 5076485

Deliverable 4.19 vi December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

ILOG SA ILOG Christian de Sainte Marie
9 Rue de Verdun, 94253,
Gentilly, France
E-mail: csma@ilog.fr
Tel: +33 1 49082981

inubit AG inubit Torsten Schmale,
inubit AG,
Lützowstraße 105-106
D-10785 Berlin,
Germany
E-mail: ts@inubit.com
Tel: +49 30726112 0

Intelligent Software Components, S.A. iSOCO Dr. V. Richard Benjamins, Director R&D
Intelligent Software Components, S.A.
Pedro de Valdivia 10
28006 Madrid, Spain
E-mail: rbenjamins@isoco.com
Tel. +34 913 349 797

MDR Partners MDR Rob Davies,
MDR Partners,
8 St. Andrew Street,
Hertford, Herts.,
United Kingdom, SG14 1JA,
Email: rob.davies@mdrpartners.com
Tel. +44 (0)208 8763121

Hanival Internet Services GmbH HANIVAL Alexander Wahler,
Hanival Internet Services GmbH,
Kirchengasse 13/1a A-1070 Wien
Email: wahler@niwa.at
Tel. +43(0)1 3195843-11

The Open University OU Dr. John Domingue
Knowledge Media Institute,
The Open University, Walton Hall,
Milton Keynes, MK7 6AA, UK
E-mail: j.b.domingue@open.ac.uk
Tel.: +44 1908 655014

SAP AG SAP Dr. Elmar Dorner
SAP Research, CEC Karlsruhe
SAP AG
Vincenz-Priessnitz-Str. 1
76131 Karlsruhe, Germany
E-mail: elmar.dorner@sap.com
Tel: +49 721 6902 31

Sirma AI Ltd. Sirma Atanas Kiryakov,
Ontotext Lab, - Sirma AI EAD,
Office Express IT Centre, 3rd Floor
135 Tzarigradsko Chausse,
Sofia 1784, Bulgaria
E-mail: atanas.kiryakov@sirma.bg
Tel.: +359 2 9768 303

Deliverable 4.19 vii December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

Unicorn Solution Ltd. Unicorn Jeff Eisenberg
Unicorn Solutions Ltd,
Malcha Technology Park 1
Jerusalem 96951,
Israel
E-mail: Jeff.Eisenberg@unicorn.com
Tel.: +972 2 6491111

Vrije Universiteit Brussel VUB Pieter De Leenheer,
Starlab- VUB
Vrije Universiteit Brussel
Pleinlaan 2, G-10
1050 Brussel, Belgium
E-mail: Pieter.De.Leenheer@vub.ac.be
Tel.: +32 (0) 2 629 3749

Deliverable 4.19 viii December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

List of Keywords/Abbreviations

• CoDIMS - Configurable Data Integration Middleware System framework.

• CoDIMS-D - Configurable Data Integration Middleware System for Discovery.

• DBMS - Database Management System.

• DHT - Distributed Hash Table.

• EAI- Enterprise Application Integration.

• NFP - Non-Functional properties.

• P2P - Peer-to-Peer.

• QoS - Quality of Service.

• NFPs - Non-Functional Properties.

• SWS - Semantic Web service.

• UDDI - Universal Description, Discovery and Integration protocol.

• WSD - Web service Description.

• WSMO - Web Service Model Ontology.

• wsmo4j - WSMO API for Java.

• WSML - Web Service Model Language.

• WSMX - Web Service Execution Environment.

• QML - Quality of service Modeling Language.

• WSLA - Web Service Level Agreement.

• WSOL - Web Service Offering Language.

Deliverable 4.19 ix December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

Table of Contents

1 Installation and Usage of the QoS-enabled Discovery Compo-
nent 1
1.1 Installation Guide for Windows-based Systems 1

1.1.1 Quick Installation Instructions 1
1.1.2 Downloading the Necessary Files 1
1.1.3 Configuring the QoS-enabled Discovery Component 3

1.2 Running the QoS-enabled Discovery Component 4
1.2.1 Running the Component in Stand-alone Mode 4
1.2.2 Running the Component in Graphical Mode 4
1.2.3 Developer’s Guide to Interface with the Component 5

1.3 Installation Guide for UNIX-based Systems 5

2 Installation and Usage of the CoDIMS Framework 6
2.1 CoDIMS Overview . 6
2.2 Use CoDIMS from the Web interface 6
2.3 Use CoDIMS within Tomcat . 7

2.3.1 System and software requirements 7
2.3.2 Prepare the Grid environment 8
2.3.3 Running the application . 9

2.4 Use CoDIMS from Java . 10
2.4.1 Pre-requisites . 10
2.4.2 Running the application . 10

2.5 More Detailed Documentation . 12

3 Release Notes 13
3.1 Implemented Features of This Second Prototype 13
3.2 Known Issues . 14

Deliverable 4.19 x December 18, 2006

QoS-enabled Service Discovery Component Prototype 2 Report

List of Figures

Deliverable 4.19 xi December 18, 2006

FP6 – 507483

Deliverable 4.19

1 Installation and Usage of the QoS-enabled Dis-
covery Component

1.1 Installation Guide for Windows-based Systems

1.1.1 Quick Installation Instructions

For impatient readers, the simplest and fastest way to run the QoS discovery compo-
nent is:

• download the whole compressed bundle available at http://lsirpeople.epfl.
ch/lhvu/download/qosdisc/qosdisc2.zip.

• unzip the above file into a local directory and modify the qosdisc.properties file
as instructed by the inline comments therein.

• run the createDB.bat file to initialize and populate the database with the avail-
able service descriptions. This would take about 50 to 60 seconds depending on
your computer configuration.

• open a shell console and run the shell script file run.bat.

1.1.2 Downloading the Necessary Files

The main download page for the QoS discovery component is at: http://lsirpeople.
epfl.ch/lhvu/download/qosdisc/. From this starting point you can find the links
to all other related documents.

The QoS discovery component is available at: http://lsirpeople.epfl.ch/lhvu/
download/qosdisc/qosdisc2.zip. The following files and directories are contained
in the downloaded archive:

• the file qosdisc2.wsmx : a JAR file of the binary executables of the QoS-enabled
discovery component. This can be used separately or added into a WSMX
installation as a component of the WSMX framework.

• the file qosdisc.properties : the configuration file of the QoS discovery component.

• the file InputSettings.csv : the configuration file of the reputation-based QoS
estimation library.

• the file COPYING : the detailed copyright information.

• the file createDB.bat : a shell script file to create the underlying database and
initialize it with the available service descriptions.

• the file run.bat : a script file for running the component in stand-alone mode.

• the directory ontologies : the WSMO test suite (WSMO goals, services, ontolo-
gies) for testing and using the QoS discovery component.

• the directory lib: all necessary libraries to use the QoS discovery component.

1

FP6 – 507483

Deliverable 4.19

• the directory dbinit : the SQL scripts to create/clear the database appropriately.

• the directory codims-home: the configuration files of the CoDIMS-D query pro-
cessing system.

• the directory examplecode: the example (Java) code listings for developers who
want to interface with the QoS discovery component.

For convenient, in the following description we assume that the user downloads and
installs the QoS discovery component in his/her local directory C:/Temp/qosdisc2.

In the subdirectory lib of the archive, the user can find the following necessary
libraries:

• The library for the functionality discovery component funcdisclite.jar. Currently,
this is the implementation of a light-weight semantic matchmaker, as specified
in Deliverable D4.14.

• The QoS reputation management library: lhvu-qos-rep.jar.

• Ostermiller Java Utils package (version 1.4.03): oster-
millerutils 1 04 03 for java 1 4.jar.

• Apache mathematic package (version 1.0): commons-math-1.0.jar.

• Derby DBMS libraries (release 10.1.3.1): derby.jar, derbyclient.jar, derbynet.jar,
and derbytools.jar.

• CODIMS-D query processing systems library: codimsd.jar.

• Apache Axis package axis.jar (release 1.4 1855 April 22 2006).

• JAX-RPC (version 1.1): jaxrpc.jar.

• KAON2 Reasoning engine: kaon2-2005-11-14.jar.

• Log4J library: log4j-1.2.13.jar.

• WSML reasoner wrapper: wsml2reasoner-20060522.jar.

• WSML parser library: wsmlparser-20060210.jar.

• WSMO4j 0.5.2: wsmo4j-0.5.2.jar.

• WSMO API 0.5.2 library: wsmo-api-0.5.2.jar.

• WSMX integration API (wsmx-integration-API-2006.jar).

2

FP6 – 507483

Deliverable 4.19

1.1.3 Configuring the QoS-enabled Discovery Component

The qosdisc.properties file contains the following configurable parameters for the QoS
discovery component:

• Property installdir : to be set to the directory where the user installs the com-
ponent, for example, C:/Temp/qosdisc2.

• Property goal : URI of the WSMO goal containing the QoS requirements of the
user, to be matched again the services in the DBMS. The goal descriptions should
also be semantically annotated with the QoS requirements, as in the provided
example goals in the default qosdisc.properties file.

• Property output : local path name of the directory to produce the output file
containing the description of the ontological instances which describe the re-
turned ranking values, for example, one can use the same installation directory
C:/Temp/qosdisc2.

• Property functional : should be set to true or false depending on whether we want
the QoS discovery component to call the functionality-based discovery compo-
nent or not.

• Property inputsettings : the place of the configuration settings for reputation-
based QoS estimation operators. This is usually the same directory as the in-
stalldir property.

• Property codims-home: is the path where the query processing system CoDIMS
should look for itself. This is usually the subdirectory codims-home of the in-
stalldir diretory, for example, codimshome=C:/Temp/qosdisc2/codims-home.

• Property ranking contains the URI of the ontology to define the base concepts
of the ranking algorithms. Similarly the property comparison is the URI of the
ontology to define the comparison between QoS instances (should be the QoS
upper ontology). Users are supposed not to modify these parameters.

• Property wsmxhost : URI of the WSMX host entry point for testing.

• Properties db.driver, db.protocol, and db.name are the configuration of the way
of the discovery component should look for the Derby DBMS. Normally these
settings can be ignored (commented out) since a Derby server will be started in-
ternally within the discovery component during its running time. In case the user
wants to test the parallelized discovery or wants to use another separate Derby
DBMS network server, these properties must be reconfigured appropriately.

• Property startserver specifies whether the user wants the QoS discovery com-
ponent to automatically start the Derby DBMS server itself. This should be
kept as the default value true, unless the user wants to use his or her own Derby
network server, as aforementioned.

The last part of the properties file is the configuration for various loggers of the
discovery component. During the testing, one may need to set some loggers to the DE-
BUG/WARN level in order to turn/off the details information about the discovery pro-
cess, e.g., log4j.logger.ch.epfl.qosdisc.operators.ReasoningContext=DEBUG. The user

3

FP6 – 507483

Deliverable 4.19

can also reconfigure the loggers to print out the result/debug/info messages to a log
file instead of the console.

IMPORTANT NOTES:

• The URIs of the goals, services, and ontologies can be a remote identifier like:
goal=http://lsirpeople.epfl.ch/lhvu/ontologies/Lite/Goal0.wsml or a
local path name like goal=file:///C:/Temp/qosdisc2/ontologies/Lite/Goal0.

wsml.

• The pathname of the file and diretories in the configuration file should follow
the convention C:/Temp/qosdisc2, i.e., it uses the symbol / to separate the
directories instead of the \.

• A user should pay attention to save the above files to his or her computer with
their original names. Some browsers, e.g., Microsoft Internet Explorer, have
the tendency to automatically save a file under the new name with a default
extension according to the file type, e.g., the file qosdisc.wsmx may be saved
under the name qosdisc.zip, which makes thing more confusing.

1.2 Running the QoS-enabled Discovery Component

1.2.1 Running the Component in Stand-alone Mode

After the installation and deployment of the QoS-enabled discovery component as
described in Sections 1.1.1 (or 1.3), a user can run and test the component in the
stand-alone mode by:

• configuring the qosdisc.properties to suit his/her needs, e.g., specify the goal and
the list of Web service descriptions you are going to work with.

• opening a DOS (or UNIX) console and run the file run.bat.

The result of the QoS discovery process will be displayed in the console (by default)
or written into a log file according to the user’s configuration of the logger in the
qosdisc.properties file.

1.2.2 Running the Component in Graphical Mode

We have also implemented a dedicated Web-based GUI for the component, which is
accessible from the Demonstration section of the download page http://lsirpeople.
epfl.ch/lhvu/download/qosdisc/. The user can browse the service repository, load
a new service file, enter input to generate a goal automatically and perform the dis-
covery interactively. After the execution, one can browse the result set via this user
interface.

The Web-based GUI is self-explanatory, so we do not provide the detailed usage
guide of the component for this graphical mode.

4

FP6 – 507483

Deliverable 4.19

1.2.3 Developer’s Guide to Interface with the Component

For developers who want to interface with the QoS-enabled discovery component them-
selves, the following example code is provided:

• LoadDatabaseIntegratedDemo.java: shows how to create the DBMS and populate
the Derby DBMS with appropriate data, e.g., service descriptions, user reports,
etc.

• TestStandaloneDatabase.java: illustrates how to interface with the discovery
component in a stand-alone fashion. This may be of interest for the users who
want to integrate the QoS-enabled discovery component with their application,
for example, WSMO Studio.

The above files are in the examplecode directory of the complete download bundle
qosdisc2.zip and also available from the main download page of the component (section
Documentation).

1.3 Installation Guide for UNIX-based Systems

The installation instruction for UNIX-like systems is mostly the same as in Sec-
tion 1.1.1. The main difference is that one should change the permission of the files
createDB.bat and run.bat to ”executable” appropriately before running them. This
can be done with the UNIX command chmod u+x createDB.bat run.bat.

5

FP6 – 507483

Deliverable 4.19

2 Installation and Usage of the CoDIMS Frame-
work

In this chapter, we explain:

• How to use CoDIMS from the available QoS-Discovery Web interface.

• How to install your own QoS-Discovery server.

• How to use CoDIMS from Java code.

• How to prepare a Grid environment.

If you find a problem in the installation, please contact us. We are also pleased to
receive feedbacks and comments.

2.1 CoDIMS Overview

CoDIMS (Configurable Data Integration Middleware System) is a middleware envi-
ronment for the generation of adaptable and configurable data integration middleware
systems. Data integration systems were designed to provide an integrated global view
of data and programs published by heterogeneous and distributed data sources. Ap-
plications benefit from these types of system by transparently accessing resources
independently of their localization, data model and original data structure.

We derived from CoDIMS a Configurable Query Processing Engine, i.e. a frame-
work where users could define and execute their requests. Afterwards, we improved
the framework to run QoS-Discovery requests. We call this new framework CoDIMS-
Discovery or CoDIMS-D, which is the new version of CoDIMS adapted to the QoS-
Discovery component (for brevity reasons we term it CoDIMS in this document). Refer
to the user manual of CoDIMS [5] for a complete description of the framework.

2.2 Use CoDIMS from the Web interface

In order to run a parallel discovery query, a user would load the http://codims.epfl.
ch/qosdisc page. The latter presents a list of available Web Services registered in the
internal repository. This may take some time for loading depending on the number of
registered Web Services. After that, you need to do the following:

• Click on Discovery tab.

• Go to Parallel Demo.

• Choose a goal definition to be run. By default, the goal is retrieved
from the file file:///C:/Progra~1/Apache~1/Tomcat~1.5/webapps/qosdisc/
WEB-INF/classes/ontologies/Lite/Goal0.wsml, which corresponds to the lo-
cation of a WSML goal on the server. You can change this goal by entering the
URL of your own WSML goal definition, for instance: http://www.dip.com/

QoSDiscovery/myGoalDefinition.wsml. Note however that the goal will con-
tinue to run against the list of known Web service descriptions.

6

FP6 – 507483

Deliverable 4.19

• Click Run to begin the execution.

An explanation of the execution scneario is in order. In this QoS-based parallel Dis-
covery demo, users look for available File Hosting Services. A given goal (Goal0.wsml)
defines users desires by specifying three QoS parameters: UploadSpeed, Availability,
MaxDownTime, and one environmental condition NetworkBandwidth [4]. The query
can be modeled as a conjunction such as:

Goal(x) = UploadSpeed(x, 750,Kbps) ∧ Availability(x, 0.99,Percentage) ∧
MaxDownTime(x, 1,Minute) ∧ NetworkBandwidth(x, 100,Mbps).

The goal also specifies weighting information to be used by the ranking algorithm.
The discovery function is applied over a repository containing 45 Web services. Once
evaluated, selected Web service descriptions are ranked and presented, with their rank-
ing value, at the bottom of the window. Their corresponding descriptions can be
obtained by clicking over the links associated to individual Web service labels.

During the execution, you will see a bar chart representing the progression of the
execution. The chart displays at the bottom of each bar a number representing a
remote node id used for parallelization. When a remote node processes a tuple; a blue
rectangle is drawn on the respective column. The numbers in the top dynamically
inform users about the execution evolution by showing the total number of tuples
(Web service descriptions) processed so far by each node. The execution elapsed-
time is proportional to the number of initial Web Services and to the number and
configuration of available remote nodes in the distributed environment.

At the end of the execution, the list of Web Services is displayed with the ranking
score. Each Web Service is annotated with a green or red square, depending on whether
it has accepted (it matches the goal) or rejected.

2.3 Use CoDIMS within Tomcat

2.3.1 System and software requirements

The following installation instructions are to be applied to the central node, i.e. the
node to host a Tomcat server. The QoS-Discovery component has been tested under
Windows XP, UNIX and LINUX operating systems; and unless we detail the difference,
the installation is the same for the 3 operating systems.

You should first install on your local node Java 1.5 and Tomcat 5.5. The lat-
ter’s installation directory is referred to TOMCAT HOME. Typical installation direc-
tory for Tomcat on Windows is C:/Program Files/Apache Software Foundation/

Tomcat 5.5.
Once Tomcat and Java 1.5 have been installed, you should download and install

the QoS-Discovery component containing CoDIMS.
The QoS-Discovery for Tomcat (qosdisc.zip) is available at http://codims.epfl.

ch/ under the Download page. Unzip the latter file under TOMCAT_HOME/webapps;
you will obtain the following structure: TOMCAT_HOME/webapps/qosdisc. Here’s the
structure of the package:

• TOMCAT_HOME/qosdisc/WEB-INF/classes contains the java classes, the embed-
ded databases, the configuration files.

7

FP6 – 507483

Deliverable 4.19

• TOMCAT_HOME/qosdisc/WEB-INF/classes/codims-home contains configuration
parameters for CoDIMS, Catalog database, logs and scripts. We call this direc-
tory CODIMS HOME.

• TOMCAT_HOME/qosdisc/WEB-INF/lib contains the jar files (especially codimsd.jar).

2.3.2 Prepare the Grid environment

In this section, we’ll discuss how to prepare a distributed Grid environment so that
you can parallelize the execution of the QoS-Discovery component over multiple nodes.

Our software uses the Globus Toolkit (GT4 Version 4.0.2) to build the Grid envi-
ronment [3]. GT4 is a set of software components that implement Axis Web services
for building distributed systems. The Web services are hosted by containers and we
interact with them by starting the containers.

First, you have to choose a cluster of remote nodes (called the environment), i.e.
choose a set of available machines (defined by their names or IP addresses). If you
do not have an available cluster of nodes, you can simulate multiple nodes on your
local machine. Each of these nodes, will hold a CoDIMS Web service (Globus Web
service). Your local machine will also hold the Web service and will coordinate the
communication between remote nodes. We will explain later how to install and call
these Web services on each node.

We recommend using UNIX/Linux nodes for your remote cluster, as it is more
convenient to call remote scripts for starting the Web services on these machines.
There’s no restriction for running Windows, UNIX or Linux on the local node.

Once you have chosen your cluster you are ready to install the Web services on each
node of your cluster by following the installation steps below (on each node, including
your local machine). Note that, if you do not have an available cluster of nodes and
want to run multiple instances of Web services on your machine, you will only need
to proceed with these steps once on your local machine:

• Download codims.zip from http://codims.epfl.ch/ under the Download page.
This file contains: The Globus Java Core Source, the CoDIMS Web Service, The
QoS-Discovery component jar file, the CODIMS HOME directory containing
some configuration informations.

• Unzip codims.zip in a directory of your choice.

• Set an environment variable called GLOBUS LOCATION that points to that
directory.

• If running UNIX or Linux, add GLOBUS LOCATION directory and GLOBUS_

LOCATION/bin directories to the path.

You have now created your remote environment and you will need to register it
within CoDIMS. For doing that, edit the file CODIMS_HOME/codims.env under the
Tomcat installation of your local machine only. The example above shows an environ-
ment (with ID=1) composed of two remote machines at EPFL and your local machine
(holding the LOCAL WEB SERVICE):

• ENVIRONMENT ID=1, you may want to choose a different id.

8

FP6 – 507483

Deliverable 4.19

• CODIMS HOME = Path To CODIMS HOME on your local machine.

• NODES=myMachine1.epfl.ch:8080;myMachine2.epfl.ch=8080.

• LOCAL WEB SERVICE = localhost:8080.

On the other hand, if you want to test the parallelization on your local machine,
you will edit codims.env as above. Note that, in this example, the two remote nodes
are running on the localhost (on different port numbers):

• ENVIRONMENT ID=1.

• CODIMS HOME = Path To CODIMS HOME on your local machine.

• NODES=localhost:8081;localhost=8082.

• LOCAL WEB SERVICE = localhost:8080.

You must commit now the modifications into the CoDIMS Catalog, which is the
database storing all important configuration parameters. Go to CODIMS_HOME/Scripts
under your Tomcat installation directory on your local machine and execute codim-
sEnv.bat if you are running Windows or codimsEnv.sh if running Unix/Linux.

2.3.3 Running the application

Now that you have downloaded and installed CoDIMS and Globus on each node, you
are ready to start the Web services and run the application.

First, you have to start the Globus container on each remote node and on your local
machine (otherwise CoDIMS Web Services won’t be available). To start the container
on a node, open a command window (or a Terminal), go to GLOBUS_LOCATION/bin

and type the following: globus-start-container -nosec -p portNumber. The portNumber
field is the port number on which CoDIMS Web Services will listen for incoming
requests (previously defined in codims.env ; and the nosec arguments indicates that we
are running the Globus container without any security mechanism.

On Unix/Linux, you can run the script container from any directory to start the
container. For stopping the container, identify the process id running on your machine
and kill it (kill command).

We have also provided scripts for starting and stopping a list of Web services. See
under CODIMS_HOME/scripts/start.sh and CODIMS_HOME/scripts/stop.sh. You
can use these scripts to start Web Services running under UNIX or Linux machines.
Note that, these scripts make use of SSH. So make sure that you have SSH installed on
each machine or replace the command by RSH (which requires fewer configurations).

After starting the containers on each node of your environment (including the local
Web service), you can run Tomcat on your local machine:

• Under Windows:

– Run TOMCAT_HOME/bin/tomcat.exe.

– Go to Windows Services (In Configuration Panel.Administrative tools) and
start Tomcat.

9

FP6 – 507483

Deliverable 4.19

• Under UNIX/Linux: run TOMCAT_HOME/bin/startup.sh.

By default, Tomcat runs on port 8080, you can change the port number by editing
the file server.xml under TOMCAT_HOME/conf and replace the occurrence 8080 by your
desired port number.

Finally, if Tomcat is started, go to http://localhost:yourPortNumber/qosdisc/

qosdisc.html to test the QoS-Discovery component. You can run multiple discovery
requests (one at a time). If you have finished with Tomcat or want to change your
CoDIMS environment settings you should stop Tomcat as follows:

• Under Windows:

– Close the Tomcat window.

– Go to Windows Services (In Configuration Panel. Administrative tools)
and stop Tomcat.

• Under UNIX/Linux: run TOMCAT_HOME/bin/shutdown.sh.

If you stop Tomcat and start it again, you will have to update you browser session
(session identifier) by closing all open windows or by clicking on the Refresh button
of your web browser.

2.4 Use CoDIMS from Java

In this section, we show how to install CoDIMS in order to run the QoS-Discovery
process from Java.

2.4.1 Pre-requisites

First, download the source code (codims src.zip) at http://codims.epfl.ch/ under
the Download page and unzip it in a folder (we call this folder CODIMS PROJECT).
Then use your favorite Java IDE to create a new project and import the files. Add all
the jar files located in CODIMS_PROJECT/lib to your project. Afterwards, prepare your
Grid environment; edit the file codims.env and run codimsEnv.bat (or codimsEnv.sh
if you’re using a Unix/Linux platform). Finally, start the containers on each node of
your environment.

2.4.2 Running the application

Overview

The class QueryManagerImpl (in package ch.epfl.codimsd.qeef) defines an interface for
communicating with CoDIMS:

• QueryManagerImpl getQueryManagerImpl().

• RequestResult executeRequest(Request request).

• void shutdown().

10

FP6 – 507483

Deliverable 4.19

• long executeAsync(Request request).

• ExecutionState getExecutionState(long requestId).

• RequestResult getRequestResult(long requestId).

See the main method for a full example of utilization.

Prepare the request

In CoDIMS, a query demand is considered more generically as a request. Thus a user
builds a request object and submits it to CoDIMS for execution. A request object
comprises the following structure:

• The type of the request (it’s ID). This one should be defined in the Catalog.

• A RequestParameter object (Package ch.epfl.codimsd.query) which encapsulates
a HashMap object storing what the application needs to process. The user may
want to add to the HashMap parameter values that the operators might need to
access during the execution.

• Some tuning parameters added to the RequestParameter HashMap.

Initialize CoDIMS

Before, running the application we need to start CoDIMS by calling the method get-
QueryManagerImpl of the class QueryManagerImpl. Afterwards, the user may execute
multiple queries without re-initializing.

Executing a request

There are two modes for starting a request execution in CoDIMS, single-user or
multiple-user mode. In a single user mode, request execution blocks CODIMS un-
til the latter finishes the evaluation. In this mode, a new request has to wait for the
previous to end. In the multi-user mode, requests run asynchronously, freeing CoDIMS
to accept and run new requests. In the multi-user mode, all common data-structures
stored in the local node are shared between concurrent requests, optimizing the overall
performance.

The single-user mode is obtained by invoking the executeRequest method of the
class QueryManagerImpl. On the other hand, a call to the executeAsync method
introduces a asynchronous evaluation of the requests, allowing concurrent query eval-
uations. When you call this method you get a request id that you can use after-
wards to know the state of your execution and to get the final results. For doing
this, you can periodically call getExecutionState(yourID) of class QueryManagerImpl
and get an ExecutionState object encapsulating execution state information. If the
ExecutionState indicates that the execution is finished (isFinished() method of class
ch.epfl.codimsd.qeef.ExecutionState), you can use getRequestResult to retrieve the com-
plete result.

11

FP6 – 507483

Deliverable 4.19

Obtaining the request results

When the ExecutionState returns a isFinished indication, the execution has been suc-
cessfully terminated and the results can be obtained from a RequestResult object. This
object is composed of:

• ResultSet object containing a list of tuples. Each tuple is a single object contain-
ing the result (in the QoS-Discovery, this corresponds to a selected Web service
and rank information).

• The metadata of the tuple, that helps you reading the object.

• The time of the execution.

• A result integer code. This parameter is not used in the QoS-Discovery request.

Finally, when you finish with CoDIMS you can close the system by calling the
shutdown method.

2.5 More Detailed Documentation

More detailed documentation can be obtained from the CoDIMS Web Site [2] or
directly from the CODIMS user manual [5].

12

FP6 – 507483

Deliverable 4.19

3 Release Notes

3.1 Implemented Features of This Second Prototype

The following features are included in this second prototype release of our QoS-enabled
service discovery component:

1. The component can select QoS-annotated Web services descriptions that match
the user’s QoS requirements and classify the result according to a ranking algo-
rithm.

2. The QoS matching and ranking algorithms use information from the developed
ontologies, utilizing the KAON2-based WSML reasoner as its underlying infer-
ence engine.

3. The ranking algorithm also uses the reputation-based estimation of various QoS
parameters of each service to classify them (according to the user-defined criteria
in the ranking algorithm).

4. The functionality-based service discovery component is also integrated into the
discovery process.

5. All implemented discovery algebraic operators have been implemented and inte-
grated into the QoS-enabled discovery framework: Bloom filter, Matchmaking,
Ranking, and Reputation management operators. This enables the paralleliza-
tion of the discovery process using the CoDISM-D query processing system to
adapt with numerous number of service descriptions in the service repository.

6. The main class ch.epfl.qosdisc.wsmx.QoSDiscovery of our discovery component
implements the standard org.wsmo.execution.common.component.Discovery in-
terface specified by the latest release of the WSMX API.

7. The Derby DBMS is used to manage the database of the service descriptions
and the QoS reports from the users.

This second (and final) prototype release also includes:

1. A list of developed ontologies tested successfully with the WSML-tools and rea-
soner. Among them are the QoS and ranking ontologies: upper ontologies and
the derived ones for the following example application scenarios: the file hosting,
hotel reservation, and stock-information broker from WP10.

2. A list of WSMO goals and Web service descriptions given the input from the use
case partners.

3. An online demonstration enables the user to test all features of the QoS-enabled
service discovery framework interactively using a dedicated Web-based GUI de-
veloped with Google Web Toolkit.

4. A Web page [1] with detailed documentation of the installation and using the
component.

13

FP6 – 507483

Deliverable 4.19

3.2 Known Issues

The following issues are left open at the time of writing this document:

• If a user would like to use the current functionality discovery component which
is integrated in our QoS component, he or she should adhere to some restric-
tions which cannot be influenced by the QoS discovery component described in
this document. The input WSMO service description and goal to be used should
comprise only post-conditions and effects (and not preconditions or assumptions)
in their capabilities. This is due to the fact that the current lightweight func-
tionality discovery engine only considers the outcome of a service execution, and
not the pre-state and post-state. Attentive readers can refer to the documenta-
tion page of the functionality discovery component at http://wiki.wsmx.org/
index.php?title=Discovery_Tutorial for more detailed instructions.

• The current functionality discovery component we are using (dated August 09th
2006) still has some stability issues: the invocation of that component occa-
sionally produces no effect. We are collaborating with the developers of the
functional discovery component to help them identify the problem.

14

FP6 – 507483

Deliverable 4.19

References

[1] QoS-enabled Service Discovery Component: Main download page.
http://lsirpeople.epfl.ch/lhvu/download/qosdisc/, 2006.

[2] http://codims.epfl.ch.

[3] http://www.globus.org/toolkit.

[4] M. Hauswirth, F. Porto, and L.-H. Vu. P2P and QoS-enabled service discov-
ery specification. DIP Project Deliverable D4.17, available from http: // dip.

semanticweb. org/ documents/ D4. 17-Revised. pdf , 2005.

[5] Othman Tajmouati and Fabio Porto. CODIMS User Manual. http://codims.

epfl.ch/download/codims.pdf.

15

