Bookmark-driven Query Routing in Peer-to-Peer Web Search

Matthias Bender, Sebastian Michel, Gerhard Weikum, Christian Zimmer

Max-Planck-Institute for Computer Science
Saarbrücken, Germany

smichel@mpi-sb.mpg.de
Overview

• Motivation
• Peer-to-Peer Systems
• Related Work
• Design Fundamentals
• Bookmark-driven Query Routing
• Conclusion/Summary
• Ongoing and Future Work
Motivation

• “Why ask one if you can ask thousands?”

• Break information monopolies.

• Intellectual input from a large number of users.

• Use **bookmarks** to find relevant peers.

→**Peer-to-Peer Web Search**
P2P Systems

- peer:
 - “one that is of equal standing with another”
 - “one belonging to the same societal group especially based on age, grade, or status”

 source: Merriam-Webster Online Dictionary

- Benefits
 - no single point of failure
 - resource/data sharing

- Problems/Challenges:
 - authority/trust/incentives
 - high dynamics
 - ...

Structured P2P-Systems

- Distributed Hashtable (DHT)
 Highly efficient support of one “simple” method

\[
\text{lookup(key)} \rightarrow \in O(\log n) \text{ routing hops!}
\]

- Chord: I. Stoica et al.
- CAN: S. Ratnasamy et al.
- P-Grid: K. Aberer

+ robustness to load skew, failures, dynamics
Chord

- Peers and keys are mapped to the same cyclic ID space using a hash function.
- Key k (e.g., $hash$(file name)) is assigned to the node with key p (e.g., $hash$(IP address)) such that $k \leq p$ and there is no node p' with $k \leq p'$ and $p' < p$.
• Using **finger tables** to speed up lookup process
• Store pointers to few distant peers
• Lookup in $O(\log n)$ steps
Related Work

• Distributed IR:
 – CORI (Callan et al., 1995)
 – GLOSS (Gravano et al., 1999)
 – “A decision-theoretic approach to db selection in networked IR” (Fuhr 1999)

• P2P Search:
 – GALANX (DeWitt et al., 2003)
 – Odissea (Suel et al., 2003)
 – PlanetP (Cuenca-Acuna et al., 2002)

• Metasearch Engines
Design Fundamentals

Step 0:
Post per-term summaries of local indexes

Step 1:
Retrieve list of peers for each query term

Step 2:
Retrieve and combine local query results from peers

Query Routing
System Architecture

Architecture of a single peer

Event Handler

PeerList Processor
Term → PeerList

Poster

Local QProcessor

Local Index

Global QProcessor

Chord Ring Connector

Communicator
Why bookmark driven QR?
Bookmark-driven Query Routing

- bookmarks reflect user interests

 bookmarks you have

- “Tell me what books you read
 and I tell you who you are”

use bookmarks to find “relevant” peers
Relevance

• Notion of “relevant”

 – Similar content
 – No or small overlap
Bookmark-driven Query Routing

• Similarity between two peers?
 – Compare bookmarks instead of comparing local indexes (too expensive).

 • Assumption: Index has been created by focused crawling using bookmarks as crawl seeds.

• We can compare bookmark lists by
 – comparing the URLs
 – comparing term distributions of the documents referenced by the URLs
Information Similarity

- Kullback-Leibler distance (relative entropy)

\[KL(f, g) = \sum_x f(x) \log \left(\frac{f(x)}{g(x)} \right) \]

where \(f \) and \(g \) are probability distributions.

- Measure for information inequality.
Overlap and Benefit

\[\text{overlap}(A, B) := ca \]

This is query independent: can be precomputed, cached,…
Query based peer assessment

• Calculate similarity between the query and the bookmarks.

• Use term distribution of the top-\(k\) local results

\[
\text{benefit}(B) \sim \frac{1}{\text{KL}(Q, B)} \times \frac{1}{\text{overlap}(A, B)}
\]
Conclusion/Summary

• P2P approach for collaborative search
• Scalable Search engine
• Extensible system architecture
• Bookmark-driven query routing
Ongoing and Future Work

- Complete the implementation
- Experiments on real web data
- Replication
Prototype
Thanks for your attention.

Questions?