Distributed Similarity Search in High Dimensions

Sebastian Michel

Ecole Polytechnique Fédérale de Lausanne (EPFL)

sebastian.michel@epfl.ch

2009/03/10
Outline

1. Introduction
2. Locality Sensitive Hashing
3. LSH based on Linear Mappings
4. Index Creation
5. Query Processing
 - K-Nearest Neighbor Queries
 - Similarity Range Query Processing
6. Related Work
7. Experiments
8. Conclusion & Outlook
Motivation

Similarity Search
- Query by example:
- Given an object, i.e., its “features”.
- Find similar objects

Application Scenarios
- Search in audio/visual data
- Often characterized by a lot of dimensions

Query:
![Query Image]

Result:
![Result Image]
Motivation

Similarity Search
- Query by example:
- Given an object, i.e., its “features”.
- Find similar objects

Application Scenarios
- Search in audio/visual data
- Often characterized by a lot of dimensions

Query:
![Query Image]

Result:
![Result Image]
Similarity Search

Objects are characterized by a collection of relevant features, i.e., points in a high dimensional space.
We consider two kinds of queries:

K-Nearest Neighbor (KNN) Queries
Given a query point q the goal is to find the K closest (in terms of the distance function) points to it.

Similarity Range Queries
Given a query point q and a range r the goal is to find all points within a distance r of q.
Our Work (Sketch)

Distributed Similarity Search using Locality Sensitive Hashing (LSH)

Scenario
- Lots of machines maintain the index for similarity search
- Support of document granularity indexing and peer (user) granularity indexing

Key Idea
- Make use of the LSH method: hash similar objects to the same hash bucket
- Map the LSH bucket space to a linearly ordered set of nodes
- Mapping is locality preserving, too
Applications Scenarios

Document Indexing
- Users compute features of their objects and insert them into the distributed index

Peer/Collection Indexing
- Users compute representative objects (cluster centroids) on their local collection and index them
- Collections can be: personal documents, documents in a digital library, or per institute, etc
- At query time: KNN or range queries determine most promising collections to query in second step
- Actual query execution is performed locally at each selected peer
Distributed Hash Tables

Example: Chord

- Structured P2P overlay
- Map peers and keys to the same cyclic id space
- lookup method to find peer currently responsible for a key
- Naive Routing: Traverse successor links linearly
- Enhanced Routing: Finger Tables pointing to distant peers. Logarithmic cost
Introduction

Locality Sensitive Hashing

LSH based on Linear Mappings

Index Creation

Query Processing
- K-Nearest Neighbor Queries
- Similarity Range Query Processing

Related Work

Experiments

Conclusion & Outlook
Locality Sensitive Hashing (LSH) [Indyk et al. STC 98]

Main Idea
- Collision based: map similar objects to same hash value
- Hash function selects bits from a binary object representation
- Hash value = bucket label
- Use several hash tables

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1,0,1</td>
<td>1,0,0,1</td>
</tr>
<tr>
<td>0,1,1,1</td>
<td>1,0,0,1</td>
</tr>
</tbody>
</table>

Result: no match match
What does the Locality Preserving Property mean?

Formally: A family of hash functions $H = \{ h : S \rightarrow U \}$ is called (r_1, r_2, p_1, p_2)-sensitive if the following conditions are satisfied for any two points $q, v \in S$:

- if $\text{dist}(q, v) \leq r_1$ then $Pr_H(h(q) = h(v)) \geq p_1$
- if $\text{dist}(q, v) > r_2$ then $Pr_H(h(q) = h(v)) \leq p_2$

If $r_1 < r_2$ and $p_1 > p_2$: more similar objects are mapped to the same hash value than distant ones.
LSH variant [Datar et al. SCG 04]

For each d-dimensional data point \mathbf{v} the hashing scheme considers k independent hash functions of the following form:

$$h_{a,B}(\mathbf{v}) = \left\lfloor \frac{a \cdot \mathbf{v} + B}{W} \right\rfloor$$

where a is a d-dimensional vector whose elements are chosen independently from a p-stable distribution, $W \in \mathbb{R}$, and $B \in [0, W]$.

LSH bucket labels

With k hash functions, bucket label is integer vector of dimension k:

$$g(\mathbf{v}) = (h_{a_1,B_1}(\mathbf{v}), ..., h_{a_k,B_k}(\mathbf{v}))$$

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,1,55,9</td>
<td>25,34,11,94</td>
</tr>
</tbody>
</table>
Large number of hash tables needed to achieve good accuracy.

- Solution/approaches in centralized settings: probe multiple buckets, given rules to generate list of promising buckets [Panigrahy SODA 05, Lv et al. VLDB 07]

Distributed Settings

Multi-probe method seems to be infeasible, due to the large number of network hops. And, how many probes?
Introduction

Locality Sensitive Hashing

LSH based on Linear Mappings

Index Creation

Query Processing
 • K-Nearest Neighbor Queries
 • Similarity Range Query Processing

Related Work

Experiments

Conclusion & Outlook
Linear Mappings

Recall: LSH hash value is a integer vector of dimension k.

We need a mapping from $\xi : \mathbb{Z}^k \rightarrow \text{IN}$ with the following desired properties:

Locality Preserving
Place similar objects on the same or neighboring peers.

Predictable Output Distribution
Needed for load balancing, peer placement.
LSH based on Linear Mappings

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15,1,55,9 80</td>
</tr>
<tr>
<td></td>
<td>14,5,53,8 80</td>
</tr>
</tbody>
</table>

Result: no match match

Theorem

For any three points $v_1, v_2, q \in S$ where $||q - v_1||_2 = c_1$ and $||q - v_2||_2 = c_2$ and $c_1 < c_2$ the following inequality holds:

$$pr(||h(q) - h(v_1)|| \leq \delta) \geq pr(||h(q) - h(v_2)|| \leq \delta)$$
Mappings

Output of LSH is a k-dimensional integer vector.

Considered Mappings ξ

- summation (very intuitive): ξ_{sum}
- p-stable LSH (again): ξ_{LSH}

For both mappings we can estimate the distribution of the output.
→ Needed for peer placement for effective load balancing.
1 Introduction

2 Locality Sensitive Hashing

3 LSH based on Linear Mappings

4 Index Creation

5 Query Processing
 - K-Nearest Neighbor Queries
 - Similarity Range Query Processing

6 Related Work

7 Experiments

8 Conclusion & Outlook
Index Creation

Local and Global DHTs

- Global DHT G. All peers participate
- Local DHTs: one for each LSH hash table, M buckets.

Local Index Maintenance

First node (at position 1): responsible for $\mu_{sum} - 2*\sigma_{sum}$ and the last bucket (at position M) to be responsible for $\mu_{sum} + 2*\sigma_{sum}$:

$$\psi(value) := \left(\frac{value - (\mu_{sum} - 2*\sigma_{sum})}{4*\sigma_{sum}}\right) * M \mod M$$
Gateways to local DHTs

“Define” fixed position inside the local DHTs’ value range. Drawn from samples, following known distribution. → more peers at the hot spots.

Gateways Selection

We select peers from the global DHT G based on

$$\rho(value, l) := (\psi(value) + hash(l)) \mod |G|$$
Handling Dynamics

Gateways Maintenance
Peer at $\rho(value, l)$ is not aware of being a gateway node. → it has to join the local DHT via another gateway node.

Growing Number of local Peers
If peers are overloaded: invite more peers from $|G|$ to local DHT.
Introduction

Locality Sensitive Hashing

LSH based on Linear Mappings

Index Creation

Query Processing
- K-Nearest Neighbor Queries
- Similarity Range Query Processing

Related Work

Experiments

Conclusion & Outlook
Linear Forwarding

Initial Phase

1. For each hash table: select gateway peer
2. Forward query to gateway peer
3. Gateway peer forwards to responsible peer

Top-K Style Query Execution based on the locality sensitive mapping to the linear peer space by passing the query on to succeeding or preceding peers.

Stopping Condition

Stop if the best local result has a distance smaller than the current rank-k item.
Linear Forwarding (Algorithm)

- Natural stopping condition
- Fully exploits the placement function characteristics

1. LinearForward(query q, threshold τ, P_{init}, direction)
2. `result[] = localIndex.executeLocalKnn(q)`
3. `if (result[0].distance > \tau/\alpha)`
4. `done`
5. `else`
6. `for (index = 0; index < K; index++)`
7. `if (results[index].distance < \tau/\alpha)`
8. `resultSet.add(results[index])`
9. `$\tau' = resultSet.rankKDistance()`
10. `sendResults(resultSet, P_{init})`
11. `forwardQuery(...)"
Range Query Processing

Initial Phase (Same as for KNN case)

1. For each hash table: select gateway peer
2. Forward query to gateway peer
3. Gateway peer forwards to responsible peer

Query is linearly forwarded, local range query execution at each peer.

Stopping Condition

Stop if there is no single item inside the specified range.
Observation
Algorithm stops unnecessarily early due to holes in the considered range.

Solution
- Issue multiple concurrent requests at different peers
- Select peers based on sampling the potential query range
1 Introduction

2 Locality Sensitive Hashing

3 LSH based on Linear Mappings

4 Index Creation

5 Query Processing
 - K-Nearest Neighbor Queries
 - Similarity Range Query Processing

6 Related Work

7 Experiments

8 Conclusion & Outlook
Method by Sahin et al. [DBISP2P ’04]

Illustration of mapping a data point v to the peer space. The number of references is 8, the Chord range is $(0, 2^{10})$, each data point is replicated three times, w.r.t. different reference point positions.

$$R = \{r_0, r_1, r_2, r_3, r_4, r_5, r_6, r_7\}$$

Sorted reference list (v) = \{r_6, r_4, r_0, r_5, r_2, r_1, r_3, r_7\}

<table>
<thead>
<tr>
<th>Reference points to create Chord keys</th>
<th>Corresponding Chord keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1^{st}, 2^{nd})$ \rightarrow (r_6, r_4)</td>
<td>1101000000</td>
</tr>
<tr>
<td>$(1^{st}, 3^{rd})$ \rightarrow (r_6, r_0)</td>
<td>1100000000</td>
</tr>
<tr>
<td>$(2^{nd}, 3^{rd})$ \rightarrow (r_4, r_0)</td>
<td>1000000000</td>
</tr>
</tbody>
</table>
1 Introduction

2 Locality Sensitive Hashing

3 LSH based on Linear Mappings

4 Index Creation

5 Query Processing
 - K-Nearest Neighbor Queries
 - Similarity Range Query Processing

6 Related Work

7 Experiments

8 Conclusion&Outlook
Experiments: Setup

Implementation

Implemented a simulation of the considered system.

Scenarios

- KNN queries, $K=20$
- range similarity search, varying ranges

Datasets

- **Flickr**: 1,000,000 images obtained from Flickr.com. MPEG7 visual descriptors. 282 dimensions, with descriptors such as *Edge Histogram Type* and *Homogeneous Texture Type*. 1,000,000 peers in the global DHT. Local DHTs of 1000 peers, each.
- **Corel**: 60,000 photo images from the Corel data set. 89 dimensions. Global DHT of 100,000 peers and 100 peers per local DHT.
Metrics and Opponents

- For both datasets, we use the Euclidean distance to measure the distances between points
- Queries: 100 randomly selected points from each dataset

Quality/Performance Measures

- Gini coefficient (i.e., indicator for the load distribution)
- Relative recall (i.e., precision w.r.t. true full-scan based answer)
- Error ratio: \(\frac{1}{K} \sum_{i=1}^{K} \frac{d_{LSH_i}}{d_{true_i}} \)
- Number of network hops

Opponents

- Simple LSH, no forwarding
- Method by Sahin et al.
- The LSH multi probe method
- Our KNN/range query methods
Recall vs. Number of Network Hops

For Corel

![Graph showing recall versus number of network hops for different methods: Linear-ξ_lsh, Linear-ξ_sum, MProbe-ξ_lsh, MProbe-ξ_sum, Linear-Sahin.](image-url)
Recall vs. Number of Network Hops
For Flickr

![Graph showing recall versus number of network hops for different methods: Linear-\(\xi\) lsh, Linear-\(\xi\) sum, MProbe-\(\xi\) lsh, MProbe-\(\xi\) sum, and Linear-Sahin. The x-axis represents the number of network hops, and the y-axis represents recall in percentage. The graph illustrates the trade-off between recall and network hops for each method.](image-url)
1 Introduction

2 Locality Sensitive Hashing

3 LSH based on Linear Mappings

4 Index Creation

5 Query Processing
 • K-Nearest Neighbor Queries
 • Similarity Range Query Processing

6 Related Work

7 Experiments

8 Conclusion & Outlook
Conclusion

- Presented a novel approach for KNN and similarity queries in distributed environments
- Based on Locality Sensitive Hashing (LSH)
- Idea: Assign LSH hash buckets to a linearly ordered set of peers
- Placement is locality preserving, enables efficient KNN and range query processing
- Experiments show the applicability of the presented methods

Outlook

- The presented approach should be applicable to centralized settings, too, e.g., using an B+ tree index
- Approach of potential interest to cluster based systems
Danke
Thank you
Epharisto
Merci
Obrigado